Erzeugung linear polarisierter Photonen und Messung der Photonasymmetrie an 4 He und 12 C *

F.A. Natter

P. Grabmayr, T. Hehl, M. Mayer, S. Wunderlich T. Lamparter, R. Schneider, G.J. Wagner

PiP/TOF Gruppe, A2 Kollaboration

25th Feb 1998

Polarisierte Bremsstrahlungs – Photonen

- Kinematik und Polarisation
- Inkohärente Intensität
- Kohärente Intensität
- > Photonasymmetrie an ${}^{4}\text{He}/{}^{12}\text{C}(\vec{\gamma},\text{np})$
 - Warum Polarisations-Freiheitsgrad
 - ⁴He als Target und experimenteller Aufbau
 - Auswertung und Ergebnisse
- Zusammenfassung und Ausblick

^{*}supported by DFG(Graduiertenkolleg),DAAD,NATO,EU,BMBF

Bremsstrahlung (experimentell)

L

Bremsstrahlungs Prozeß

Kinematik:

Impulsübertrag: $\delta = q_l^{\min}(E_{\gamma}) < q < 2\delta$ $q_t/q_l \approx 10^3 \rightarrow \text{Pancake}$

Wirkungsquerschnitt:

$$\sigma \sim k \left(\frac{\epsilon p'}{kp'} - \frac{\epsilon p}{kp}\right)^2$$
$$\approx \frac{1}{k} \cos^2 \phi$$

Hauptbeitrag: $\vec{E} \parallel \vec{\epsilon} \in (\vec{p}, \vec{p}')$ Ebene

Koch und Motz Charts of incoherent Bremsstrahlung

Don't print out!!

Inkohärente Bremsstrahlung

Einzelnes Atom: \vec{q} beliebig verteilt \rightarrow unpolarisiert

$$I = \frac{x}{\bar{\sigma}} \frac{d\sigma}{dx} = (1 + (1 - x)^2)\psi_1 - \frac{2}{3}(1 - x)\psi_2 \qquad x = k/E_0$$

Kohärente Bremsstrahlung

Pancake im Gitter (Diamant) Bragg - Bedingung $(\vec{q} = \vec{g})$ \rightarrow Kohärente Bremsstrahlung

- → fixiert Impulsübertrag
- \rightarrow polarisierter Strahl

Experimentelle Effekte und Polarisation

Photonasymmetrie in 4 He $(\vec{\gamma}, NN)$

⁴He als Target

- Einfache Struktur (nur 1s) \rightarrow keine Schalenmischung
- Hohe Dichte, wenig Nukleonen \rightarrow mehr SRC, weniger FSI
- Verbindung von mikroskopischen Rechnungen mit phänomenologischen Modellen

Photonasymmetrie

Neue Observable Σ (Photonasymmetrie) ist sensitiv auf SRC $\sigma_{\parallel,\perp} = \sigma_0(1 \pm P_{\gamma}\Sigma), \ \Sigma = \frac{1}{P_{\gamma}} \frac{\sigma_{\parallel} - \sigma_{\perp}}{\sigma_{\parallel} + \sigma_{\perp}} \quad \text{für } (\vec{\epsilon} \parallel, \perp n'p')$

Jastrow Korrelationen:

$$\psi(1,2) = \phi(1)\phi(2)f_c(r_{12})$$

$$g(k) = \mathcal{F}(1-f_c)$$

$$\downarrow 1 \quad \text{hard} \quad \text{core} \quad \mathbf{r}_{12}$$

1 f

Direkter Photoabsorptions Prozeß in (γ, pp) QD Näherung $(|np \rangle = 1s)$, zero range approximation: (Jan Ryckebusch, Phys. Lett. B383 (96) 1)

$$\sigma_0 \sim J_{1B}^M(g(k)) + J_{1B}^C(g(k)) + J_{\Delta}$$

$$\sigma_0 \Sigma \sim J_{1B}^{M,C}(\pm g) + J_{\Delta}$$

Photonasymmetry und SRC

 16 O $(\gamma,\mathrm{pn})^{14}$ N

Boffi et. al. Nucl. Phys. A **564** (1993) 473

 $d(\gamma,p)n$ WQ

A. Buchman,W. LeidemannNP A443 (85) 726

Photonasymmetrie Σ

 ▷ Beiträge mit verschiedenen Vorzeichen
 ▷ f_c beeinflußt
 Beiträge verschieden

Experimenteller Aufbau

Foto der 4He Aufbaus

Don't print out!!

PiP und TOF

n - Energiebestimmung:

Flugzeitmethode

$$\label{eq:expectation} \begin{split} \mathrm{dE} &= \mathrm{Veto}/\mathrm{Startdetektor} \\ \mathrm{n} \ \mathrm{Nachweis} \ \mathrm{Wahrsch.} \ \sim d \\ E \ \mathrm{Unschärfe} \ \sim \ d^2 + t^{-2} \end{split}$$

Aktuelle Auswertung

Missing momentum

$$\vec{p}_m = \vec{k}_\gamma - \vec{p}_p - \vec{p}_n$$

Schnitt auf $E_m = Q$
 \rightarrow 1s Impulsverteilung
Inelastische Prozesse
 \rightarrow höhere Impulse

⁴He/¹²C Photonasymmetrie im Vergleich

XIII

Winkelabhängigkeit der Asymmetrie

 ${}^{4}\text{He}(\vec{\gamma}, \text{np})$ Photonasymmetrie bei $E_{\gamma} = 220$ MeV, senkrechte und parallele Polarisation:

vorläufig !!

Zusammenfassung

- Verbesserte Beschreibung polarisierter Bremsstrahlung
 - $\rightarrow\,$ zuverlässigere Polarisationsbestimmung
- Photoasymmetrie Messungen an ⁴He und ¹²C erfolgreich abgeschlossen
 - zuverlässige Daten und gute Statistik
 - ermutigende vorläufige Ergebnisse

<u>Ausblick</u>

- Auswertung des ⁴He Experiments beenden \rightarrow Photonasymmetrie (Σ) in Abängigkeit von E_{γ} und θ
- 12 C Auswertung (Σ) durch Gruppen in Glasgow, Edinburgh
- Genauere Rechnungen notwendig, besonders ⁴He
 →Weitere Zusammenarbeit mit Theoretikern
 aus Gent, Trento, Pavia, Valencia, Tübingen
- Hochauflösendes ¹⁶O Experiment (akzeptiert) Untersuchung der individuellen Reaktionsmechanismen in separat aufgelösten Endzuständen (Erwartete E_m Auflösung: 1.5 MeV)

