Photoinduzierte Zwei Nukleon Emission zur Untersuchung von NN Korrelationen *

F.A. Natter

PiP/TOF Gruppe: Edinburgh, Glasgow, Tübingen A2 Kollaboration Mainz

7.7.00

Einleitung

- Kernkraft

- Schalenmodell und SRC
- Experimente zu SRC
 - bisherige Experimente
 - experimenteller Aufbau
- Polarisierte Bremsstrahlung
 - Produktion
 - Beschreibung
- ▶ Die ⁴He($\vec{\gamma}$,np) Reaktion
 - Wirkungsquerschnitte
 - Asymmetrien

^{*}unterstützt durch DFG(Schwerpunkt/Graduiertenkolleg),DAAD,NATO

Experimentelle Beobachtung: Edelgase, magische Zahlen

Erfolg

Grundzustandseigenschaften: Spin, Parität, Bindungs- u. Anregungsenergien

<u>Aber</u>

Näherung fraglich nicht fundamental nur phänomenologisch

Kern

 $V_i = \sum_{j'} V_{ij} + \sum_{jk'} V_{ijk}$

 $\rightarrow V_i^{\text{mean field}}$: IPM

stark zustandsabhänging

kurzreichweitig repulsiv

Moderne NN Potentiale: (fundamentale Invarianz-Prinzipien,NN Streudaten)

$$V_{ij} = \sum_{p=1}^{14} v_p(r_{ij}) \hat{O}_{ij}^p$$

 $\hat{O}_{ij}^{p} : \mathbf{1}, \tau_{i}\tau_{j}, \sigma_{i}\sigma_{j}, \sigma_{i}\sigma_{j}, \tau_{i}\tau_{j}, \mathbf{S}_{ij}, S_{ij} \cdot \tau_{i}\tau_{j}, LS, LS \cdot \tau_{i}\tau_{j}, L^{2}, L^{2} \cdot \tau_{i}\tau_{j}, L^{2} \cdot \sigma_{i}\sigma_{j}, L^{2} \cdot \sigma_{i}\sigma_{j} \cdot \tau_{i}\tau_{j}, (LS)^{2}, (LS)^{2} \cdot \tau_{i}\tau_{j}$

realistisches Potential + HF \rightarrow ungebundene Kerne

[MeV/A]	CDB	ArgV18	Nijm1	Bonn C	Reid
E_{HF}	4.64	30.34	12.08	29.56	176.20
E_{Corr}	-17.11	-15.85	-15.82	-14.40	-12.47
$V_{\pi HF}$	16.7	15.8	15.0	17.8	
$V_{\pi Corr}$	-2.30	-40.35	-28.98	-45.74	
T	36.23	47.07	39.26	40.55	49.04

<u>Ansatz:</u> Effektive 1K Potentiale (mean field) + NN Korrelationen Brückner-Bethe-Goldstone (G-Matrix) / BHF, Fermi-Hypernetted chain, VMC, e^S Method

Korrelationen

Mean field Potential \rightarrow SM-Wellenfunktionen: Φ_{SM} Real. NN Potential \rightarrow korrelierte Wellenfunktionen: Ψ_{NN}

SM - Besetzungszahl $n_lpha(k) = \sum ig \langle A \left| \hat{n}_i(E_i,k)
ight| A ig
angle$

PiP 🦷

TOF

Meßprinzip

Elastische e-Streuung:

Globale 1 Körper Eigenschaften (Ladungsverteilung)

1N knockout:

1 Körper Wellenfunktion (mean field Eigenschaften) Spektator Modell (PWIA) \rightarrow Teilchenimpuls im Kern

BHF Rechnungen mit korr. Ψ_{NN} + real. V_{NN} (Müther et al., PRC **51**(95)3040)

Idee: hoch $\omega \rightarrow SRC \nearrow$ Aber: $E_x > 2N$ Schwelle

2N knockout:

2 Körper Eigenschaften (relative Wellenfunktion)

Anfangszustand: korrelierte Wellenfunktion

→ Wirkungsquerschnitt abhänging vom NN-Pot. Einkörperstrom sehr empfindlich Beitrag verschwindet im SM, also ohne Korrelationen

Experimentelle Ansätze

Durch Gleichstrom Beschleuniger mit hoher Brillianz wurden Messungen mit mittlerer Energie - Auflösung durchführbar:

$\overline{(\gamma,pp)}\ \overline{(\gamma,pn)}$

- Koinzidenz Messung (weiter Winkel- und E_{γ} Bereich) (Diss. T. Lamparter, R. Schneider)
- Reelle (transversale) Photonen empfindlich auf *Tensor* Korrelationen
- MEC/IC separierbar über Kinematik und Isospin
 (D. Knödler Diss., M. Heim)

(e,e'pp)

- Superparallele Kinematik: MEC=0, IC=0 für σ_L
- \rightarrow zentrale SRC (WQ sehr klein)

(e, e'pn)

- Superparal. Kin.: IC=0 für σ_L
- \rightarrow + *Tensor* Korrelationen (MEC)

Kinematik and Observable

Erster Ansatz

faktorisiertes 2N Modell von K. Gottfried (1958)

$$d\sigma = 2\pi^{-4}\delta(E_f - E_i) d^3p_n d^3p_p \;\; F(p_{NN}) \cdot S_{fi}(\langle p_{\mathsf{rel}}
angle)$$

 \underline{F} :

Paarimpulsverteilung (globale Eigenschaften) S_{fi} :

Reaktions - Dynamik (Korrelationen)

$$\sigma \propto \Psi^{\star} \Psi_{HO} \cdot \sigma(\gamma \mathsf{D})$$

⁶Li: α -d Cluster Strukutur

PiP 🦷

TOF 🎽

7

Ziel dieser Experimente:

Messung bzw. Quantifizierung der SRC über 2N knockout

Verifikation:

Test von Modellvorstellungen Verständnis des Reaktionsmechanismuses Bestimmung der relevanten Observablen (⁶Li) E_m : Anregung des Restkerns (Spektatormodell) p_m : Paarimpuls im Kern vor dem Stoß

Frühere Experimente: π -Streuung

Problem: ISI im Eingangskanal π :starke WW. $\Leftrightarrow \gamma$: elektromagn. WW. \rightarrow PWIA kaum gerechtfertigt.

Erste photoinduzierte knockout-Experimente hatten schlechte Energie Auflösung und Statistik.

Erst durch moderne Gleichstrombeschleuniger sind Photon-Tagging mit guter Statistik und somit die hier vorgestellten Experimente mit hoher Energie-Auflösung möglich geworden.

Experimenteller Aufbau

Tagger

Untergrund Subtraktion

<u>Start- und</u> <u>Veto Detektor</u>

Definiert Reaktionszeitpunkt

Teilchen-Diskriminierung

Targt-Anforderungen

hohe ⁴He Dichte

Kaum störendes Material im Strahl (Fenster: $100 \mu m$ Kapton)

Lange Standzeiten (<u>12h</u>) (großes He Reservoir, LN_2 Schild)

Geometrische Beschränkungen aufgrund des ΔE Detektors

PiP

Teilchentrennung mit $\Delta \text{E-E}$ und Range Methode

Diss. T.Lamparter 97

PiP /// /// *TOF*

TOF

PiP ∥ ↓ ↓ ↓ *TOF* ↓

TOF

Zufällige Ereignisse

3-fach Koinzidenzen

T. Lamparter et. al. ,Z. Phys. A **355** (96) T. Hehl, Prog.Part.Nucl.Phys. **34** (95) Ph.-Selbstenergie + LDA: $\sigma_{tot} = -\frac{1}{k} \int d^3 r \, \rho(r) \, \text{Im}\Pi(k, \rho)$ Carrasco,Oset NPA **536** (92) 445

¹²C Paar-Impulsverteilungen des pn-Paares

TOF 🍐

${}^{16}\mathrm{O}(\gamma^*,\mathrm{NN}){}^{14}\mathrm{C}/{}^{14}\mathrm{N}$ hochauflösend

Untersuchung der individuellen Reaktionsmechanismen in separat aufgelösten Endzuständen (Erwartete E_m Auflösung: 1.5 MeV) \rightarrow (e,e'pn) Strahlzeit: soeben (5/00) erfolgreich beendet

⁴He als Target

- Einfache Struktur ('nur' 1s) \rightarrow keine Schalenmischung
- Hohe Dichte, wenig Nukleonen \rightarrow mehr SRC, weniger FSI

- Verbindung von mikroskopischen Rechnungen mit phänomenologischen Modellen

Photonasymmetrie

Neue Observable Σ (Photonasymmetrie) ist sensitiv auf SRC $\sigma_{\parallel,\perp} = \sigma_0(1\pm P_\gamma \Sigma), \ \ \Sigma = rac{1}{P_\gamma} rac{\sigma_\parallel - \sigma_\perp}{\sigma_\parallel + \sigma_\perp} \ \ \mbox{für} \ (ec{\epsilon} \parallel,\perp n'p')$

Einfluß der SRC

Modell: Impuls Appr., Gottfried Appr., Detektor Akzeptanz

Ryckebusch: Phys.Lett. B383, Boato, Giannini: J.Phys. G15, Boffi: Nucl.Phys. A564

Polarisierte Bremsstrahlung

 $\begin{aligned} & \frac{\text{Kinematik:}}{\delta} = q_l^{\min}(E_{\gamma}) < q < 2\delta \\ & q_t/q_l \approx 10^3 \rightarrow \text{pancake} \\ & \frac{\text{Wirkungsquerschnitt:}}{\sigma \sim \frac{1}{k}\cos^2\phi} \\ & \text{Haupt Beitrag:} \\ & \vec{E} \parallel \vec{\epsilon} \in (\vec{p}, \vec{q}) \text{ Ebene} \end{aligned}$

Kristall Radiator (Diamand) und Bragg Bedingung $\vec{q} = \vec{g}$ \rightsquigarrow zusätzliche kohärente (polarisiert) Intensität: $I = \frac{k}{\bar{\sigma}} \frac{d\sigma}{dk}$

Experimentelle Effekte

$$egin{aligned} I_{\mathsf{exp}} &= \int_{\mathcal{MS}} ds \int_{\mathcal{BD}} d^2 t_b \; \int_{\mathcal{BS}} d^2 r_e \ & w(ec{t}_b) \otimes w(ec{t}_m(s)) \cdot w(ec{r}_e) \cdot I_{\mathsf{coh}}(heta_0, lpha_0, ec{t}_e) ig|_{r_c > |ec{r}_{\gamma}^{\, C}|} \end{aligned}$$

Monte Carlo Simulation (MCB)

Parmeter: $ES(E_0), BS(\vec{r_e}), BD(\vec{t_b}),$ $MS(\vec{t_m}(s))$ Verteilungen Radiator Eigenschaften

Bremsstrahl. Prozess $\theta_0, \alpha_0 \xrightarrow{\vec{p_e}} \theta_e, \alpha_e$ Berechnung $I^{\text{coh,inc}}$ photon \longrightarrow lab sys Test Kollimation

 \rightarrow Vorteil: 'präzise', Auswertung pro Event

Rechteckiger Kollimator

gleicher totaler Wirkungsquerschnitt (tagging efficiency)

Näherungsweise analytische Rechnung (ANB)

Näherungen

PiP

TOF

- 2d transverse Verteilungen —→ sphärisch symmetrisch
- mittlere Verteilung der Mehrfachstreuung: $\bar{\sigma}_m$ (Moliére Theroie)
- effektive Elektron Divergenz (*ED*): $\sigma_{ED}^2 = \bar{\sigma}_m^2 + \sigma_{BD}^2$

$$\Rightarrow I_{\exp}^{\text{inc/coh}} = \int_{6 \text{ fold}} \longrightarrow \int_{\vartheta_c} C'_{\text{ED}}(\vartheta_C) I_{\text{inc}} / C_{\text{ED}} I'_{\text{coh}}$$

Verbesserungen^{*} (ANB,MCB \leftrightarrow Göttingen)

- Hubbells WQ.: bessere Z, x, ϑ_c Abhängigkeit JAP 30/7(59)981
- exakterer e^- Beitrag: Z, x, E_B abhängig

Mathew, Owens NIM 111(73)157

*F.A. Natter, Prog. Part. Nucl. Phys 44 (2000) 461

Ergebnisse

 \longrightarrow ANB Rechnung für 2 Kolli. Winkel: $artheta_{c}^{A,B}=0.5,0.7$ mrad

Vergleich 4 He und 12 C

Prozesse:

direkte NN +FSI π Produktion (emit.,reabs.) 3N Absorption

Geringer:

FSI π Produktion

<u>Stärker:</u>

direkte NN Absorption

dominant wegen höherer Dichte

Analog:

 E_m Schnitt erhöht direkte NN Absorption

⁴He-Wirkungsquerschnitt

PiP ∦ ↓∕∕✿ TOF 🎍

Paarimpuls

PiP ∦ ↓∕∕✿ *TOF* ┣

Asymmetrien

PiP ♀ ↓∕∕⊅ *TOF* ┣

$\frac{\text{Asymmetrie }\Sigma}{\sigma = \sigma_0 \cdot (1 + P_{\gamma} \Sigma \cos 2\phi_m)}$ $\sigma_0 (E_{\gamma}, p_p, p_n, \dots)$ $\sigma_0 (\dots \theta_p, \theta_n, \phi_d)$

$$\phi_m = \frac{1}{2}(\phi_p + \phi_n)$$
 $\phi_d = \phi_p - \phi_n$

 $\begin{array}{l} \underline{\text{Nur Daten mit}}\\ E_{\gamma} < 50 \ \text{MeV}\\ \rightarrow \ \text{direkte 2N Abs.} \end{array}$

PiP 🦷 Artor TOF 🎽

Vergleich

Zusammenfassung

- Aus bisherigen Messungen: Verständnis des Reaktionsmechanismus Test einfacher Korrelationsfunktionen
- Polarisations Freiheitsgrad:

 → zusätzliche Einschränkung für mögliche Korrelationsfunktionen.
 Grad der Polarisation gut bestimmt (zwei Beschreibungen: ANB schnell, MCB 'exakt', syst. Fehler < 3%)
- Vielversprechende Ergebnisse aus der ⁴He ($\vec{\gamma}$,np) Messung

Ausblick

- Quantifizierung der Korrelationen durch Vergleich der ⁴He Wirkungsquerschnitte und Asymmetrien beider Isospinkanäle mit theoretischen Rechnungen
- Hochauflösende ($\Delta E_m < 1 \text{ MeV}$) Messungen (γ, pp), (e, e'pn)

