Study of NN Correlations by polarised photons *

F.A. Natter

P. Grabmayr, T. Hehl, M. Mayer, S. Wunderlich T. Lamparter, R. Schneider, G.J. Wagner

PiP/TOF Gruppe, A2 Kollaboration

24th April 1998

Correlations and 2N knockout

- Introduction
- Approaches for measurements
- Survey on completed experiments
 - Experimental setup
 - ⁶Li,¹²C,⁴He Results
- > The ⁴He($\vec{\gamma}$,2N) experiment
 - Asymmetry and SRC
 - Production of polarised photons
 - Results
- Conclusion

^{*}supported by DFG,DAAD,NATO

NN Correlations and Photo Absorption

Shell model

Approach via exclusive 2N emission

PiP 🦷 小へ TOF 🎽 2B currents are sensitiv on SRC $\sigma \propto | < f | j_{[1]} + j_{[2]} | i > |^2$ $\sim F(P) S_{fi}(< p_r >)$

 \rightarrow measurement of p_r , includes correlations

2N Knockout Measurements

Ground state correlations and competing processes

(e, e'pp)

- Rosenbluth separation
- superparallel kinematics: MEC=0, IC=0 for σ_L
- $\rightarrow\,$ direct approach to central SRC
- But: Fermi motion of pair: $\vec{q} \neq \vec{p}_N$ Xsec very small

$\underline{(\gamma,np) \And (\gamma,pp)}$

- Coincident measurement over wide angle and E_{γ} range
- Real (transversal) photons sensitive on larger tensor SRC
- MEC/IC might be separated via kinematics and isospin

Survey of ${}^{6}Li$, ${}^{12}C$, ${}^{4}He$, D

⁶Li

- Absorption process understood in QD- and α d cluster model ⁶Li(γ ,np/pp)⁴He exc./g.s. \rightarrow 2N emitted from α /d cluster
- Data (g.s.) are well reproduced by calculations Kukulin et al. with Moscow potential NPA 513(90)332
 - \rightarrow Correlated WF dominated by tensor forces
- d-cluster in Li \equiv deuteron (apart from Fermi motion)

¹²C

- Understanding of reaction mechanisms from comparison with Oset's code
- separation of direct 2N absorption possible
- pp channel weak (possible fed by dominating (γ, np) and FSI induced charge exchange current)

4 He

- basically 1S states
- high density, few nucleons \rightarrow SRC \nearrow FSI \searrow
- photon asymmetry (lin. $\vec{\gamma}$) \rightarrow SRC \nearrow FSI \searrow
- \rightarrow barely shell mixing

Experimental Setup

+ ToF system unique
+ High energy and momentum resolution

PiP ∥ ↓ ∕ ∕ ∕ ∕ *TOF* 🍐

 Tagger:
 S.J. Hall NIM A301(91)230

 PiP
 :
 I. MacGregor et al., NIMA 382(96)479

 ToF
 :
 P. Grabmayr, NIMA 402 (98) 85-94

⁶Li: α -d Cluster Structure

P. Grabmayr et al., Phys. Lett. B 370 (96) 17

¹²C: Reaction Mechanisms

T. Lamparter et. al. ,Z. Phys. A 355 (96) 1; T. Hehl, Prog. Part. Nucl. Phys. 34 (95) 385

₽i₽ ║ ↓∕∕✿ TOF 🏅

⁴He Missing Energy Distribution

- $\bullet\,$ same features as $^{12}{\rm C}$
- FSI reduced compared to $^{12}\mathrm{C}$
- direct 2N absorption stronger with respect to inelastic processes

Pair Momentum Distributions

TOF

HO momentum distribution fits data \rightarrow Spectator model applicable

 $P_{\rm NN} = -p_{\rm rec}$

Separation $\sigma \propto F(P)S_{fi}$ possible

⁴He and ⁶Li exc. same pair momentum distribution

NN Relative Momenta

Final: $\vec{p}'_{\rm rel} = (\vec{p}'_p - \vec{p}'_n)/2$ Initial: $\vec{p}_{\rm rel} = \vec{p}'_{\rm rel} \pm \vec{q}/2$

'Perpendicular' kinematics $ightarrow ec{p}_{
m \, rel} pprox ec{p}_{
m \, rel}^{\prime} pprox ec{p}_{
m \, rel}^{\prime}$

np COM system: kin. relation: $p_{rel}(E_{\gamma})$

Q values differ \rightarrow not comparable

PiP 🦌 TOF eventwise Q value corrected via E_{2m}

Relative Momentum Distributions

PiP /// MADE /// TOF

Polarised Measurements

Photon asymmetry Σ (SRC sensitive observable): $\Sigma = \frac{1}{P_{\gamma}} \frac{\sigma_{\parallel} - \sigma_{\perp}}{\sigma_{\parallel} + \sigma_{\perp}}$ with $\sigma_{\parallel,\perp} = \sigma_0 (1 \pm P_{\gamma} \Sigma)$

Direct photo absorption:

factorized Xsec in QD and zero range approximation:

(Jan Ryckebusch, Phys. Lett. B383 (96); Boato/Giannini J. Phys. G15 (89))

$$\sigma_{0} \sim \left| J_{1B}^{S,C}(\boldsymbol{f}) + J_{MEC}(\boldsymbol{f}) + J_{\Delta}^{(\text{non})\text{res}} \right|^{2}$$

$$\sigma_{0}\Sigma \sim \left| J_{1B}^{C}(\boldsymbol{f}) + j_{MEC}(\boldsymbol{f}) - J_{\Delta}^{(\text{non})\text{res}} \right|^{2}$$

Additional support:

Boffi et. al., Nucl. Phys. A 564 (1993) 473 : 16 O $(\gamma, pn)^{14}$ N A. Buchmann, Leidemann Nucl. Phys. A 443 (85) 726 : $\sigma, \Sigma \{ d(\gamma, p)n \}$

Bremsstrahlung (experimental)

TOF

⁴He/¹²C Photon Asymmetry in Comparison

Low E_{γ} : photon asymmetry E1 dominant $\rightarrow \Sigma$ pos $E_{\gamma} > \pi$ threshold : M1 dominant $\rightarrow \Sigma$ neg (N- Δ transition ~ M1) $(\theta_p = 90^\circ)$ photon asymmetry 0-⁴He \sim D ? (only subset of data !, calibration not yet finished) ¹²C : Σ smaller FSI or medium dependent SRC $(50^\circ < \theta_p < 130^\circ)$

PiP ∦ →→◆ *TOF* 🍐

preliminary !!

Summary

- reaction mechanisms understood (Oset)
 → direct 2N absorption separable
- Spectator model and factorization applicable
 Separation of center and relative motion
 → high relative momenta at present clearest sign of SRC
- pn channel: comparison with free deuteron (also polarized)
- Photon asymmetry measurements on ⁴He and ¹²C performed. (reliable data, high statistics and encouraging preliminary results)

Perspectives

- (e,e'pn) as missing reaction (targets: ^{3,4}He, ¹⁶O) (theoretical evidence for stronger effects in pn than pp).
 → First test proved feasibility of experiment
- high energy resolution to extract state dependent SRC
- Comparison to latest calculations: (¹⁶O: Müther, Tübingen; ⁴He: Ryckebusch, Gent)

Real photon experiments are most competitive worldwide (in collaboration with Scottish groups)(e,e'pp) Mainz, supported by SFB(e,e'pn) Mainz, supported by DFG Schwerpunkt

References

T. Hehl, P. Grabmayr, M. Sauer und G.J. Wagner, "A gain monitoring system for scintillation detectors using ultra bright LEDs", Nucl. Instr. Meth. **A354** (1995) 505

G.E. Cross, P. Grabmayr, T. Hehl, T. Lamparter, M. Sauer, R. Schneider, K. Spaeth, "Proton photoproduction from ¹²C", Nucl. Phys. **A593** (1995) 463

P. Grabmayr, T. Hehl, T. Lamparter, I.J.D. MacGregor, J.A. MacKenzie, J.C. McGeorge, G.J. Miller, R.O. Owens, M. Sauer, R. Schneider, K. Spaeth und G.J. Wagner, "Excitation Functions for the Two-Nucleon Photoabsorption in ⁶Li", Phys. Lett **B370** (1996) 17

P.D. Harty, P. Grabmayr, T. Hehl, T. Lamparter, M. Sauer, R. Schneider und K. Spaeth, "The contribution of 2N photon absorption in ${}^{12}C(\gamma,2N)$ reactions for E_{γ} 150 - 400 MeV", Phys. Lett **B380** (1996) 247

J. A. MacKenzie, P. Grabmayr, T. Hehl, T. Lamparter, M. Sauer, R. Schneider, "Quasifree π^+ production studied using the ${}^{12}C(\gamma, \pi^+n){}^{11}B$ reaction in the Delta (1232) resonance region", Phys. Rev. **C541** (1996) R6

T. Lamparter, P.Grabmayr, T. Hehl, M. Sauer, R. Schneider, K. Spaeth, G.J. Wagner, "On Photonuclear Reaction Mechanisms at Intermediate Energies", Z. Phys. **A355** (1996) 1

I.J.D. MacGregor, P. Grabmayr, T. Hehl, T. Lamparter, R. Schneider, "PiP — a large solid angle scintillation telescope for detecting protons and pions", Nucl. Inst. Meth. **A382** (1996) 479

G. Audit, P. Grabmayr, "Study of three nucleon mechanisms in the photodisintegration of ³He", Nucl. Phys. **A614** (1997) 461

M. Liang, P. Grabmayr, T. Hehl, J. Leypoldt, T. Lamparter, A. Mondry, M. Sauer, R. Schneider, K. Spaeth, " ${}^{12}C(\gamma, \pi^+ n)$ and ${}^{12}C(\gamma, \pi^+ p)$ reactions across the Δ resonance region", Phys. Lett. **B411** (1997) 244

I.J.D. MacGregor, P. Grabmayr, T. Hehl, T. Lamparter, M. Sauer, R. Schneider, "Mechanisms in the ${}^{12}C(\gamma, pn)$ and (γ, pp) Reactions", Phys. Rev. Lett. **80** (1998) 245

T.T-H.Yau, P. Grabmayr, T. Hehl, T. Lamparter, M. Sauer, R. Schneider, "Role of ρ -meson exchange in the ${}^{12}C(\gamma,np)$ reaction", Europ. J. of Phys. **A** (1998)

P. Grabmayr, T. Hehl, A. Stahl, J.R.M. Annand and R.O. Owens, "A high resolution, large acceptance scintillation time-of-flight spectrometer", Nucl. Inst. Meth. A402 (1998) 85