Study of NN Correlations by polarised photons *

F.A. Natter

P. Grabmayr, T. Hehl, M. Mayer, S. Wunderlich T. Lamparter, R. Schneider, G.J. Wagner

PiP/TOF Gruppe, A2 Kollaboration

17th March 1998

Correlations and 2N knockout

- Introduction
- Approaches for measurements
- Survey on completed experiments
 - Experimental setup
 - ⁶Li,¹²C,⁴He Results
- > The ⁴He($\vec{\gamma}$,2N) experiment
 - Aysmmetry and SRC
 - Production of polarised photons
 - Results
 - Conclusion

^{*}supported by DFG(Graduiertenkolleg),DAAD,NATO,EU,BMBF

NN Correlations and Photo Absorption

Shell modell

CERES (P. Grabmayr) Prog.Part.Nucl.Phys **29** (92) 251

Approach via 1N knockout

BHF calculations with corr. Ψ_{NN} + real. V_{NN} (Müther et al., PRC **51**(95)3040)

Idea: high $\omega \to SRC \nearrow$ But: $E_x > 2N$ threshold

Approach via exclusive 2N emission

PiP "

2B currents are sensitiv on SRC $\sigma \propto | < f | j_{[1]} + j_{[2]} | i > |^2$ $\sim F(P) S_{fi}(p_r)$

 \rightarrow measurement of p_r , includes correlations

2N Knockout Measurements

Ground state correlations and competing processes

(e, e'pp)

- superparallel kinematics: MEC=0, IC=0 for σ_L
- \rightarrow direct approach to central SRC
- But: Fermi motion of pair: $\vec{q} \neq \vec{p}_N$ Xsec very small

(γ, np)

- Coincident measurement over wide angle and E_γ range
- Real (transversal) photons sensitive on larger tensor SRC
- MEC/IC might be separated via kinematics and isospin (Daniel Knödler, Tübingen, talk 16.3 2N Corr.)

Tensor Correlations (nuclear matter)

Survey of ${}^{6}Li$, ${}^{1}2C$, ${}^{4}He$, D

⁶Li

• Absorption process understood in QD- and α d cluster model

⁶Li(γ ,np/pp)⁴He exc. \rightarrow 2N from α cluster ${}^{6}\text{Li}(\gamma,\text{np})^{4}\text{He g.s.} \rightarrow 2\text{N from d cluster}$

- Data are well reproduced by calculations Kukulin et al. with Moskau potential NPA 513(90)332 \rightarrow Correlated WF dominated by tensor forces
- d-cluster in Li \equiv deuteron (besides Fermi motion)

$^{12}\mathsf{C}$

- Yielded understanding of reaction mechanisms via comparison with Oset's code
- separation of direct 2N absorption possible
- pp channel weak (possible fed by dominating (γ, np) and FSI induced charge exchange current)

4 He

- basically 1S states
- high density, few nucleons \rightarrow SRC \nearrow FSI \searrow
- microscopic calculations
- photon asymmetry (lin. $\vec{\gamma}$) \rightarrow SRC \nearrow FSI \searrow
- \rightarrow barely shell mixing
- \leftrightarrow phenomenologic models

Experimental Setup

⁶Li: α-d Cluster Strucuture

P. Grabmayr et al., Phys. Lett. B 370 (96) 17

¹²C: Reaction Mechanisms

T. Lamparter et. al. ,Z. Phys. A 355 (96) 1; T. Hehl, Prog. Part. Nucl. Phys. 34 (95) 385

⁴He Missing Energy Distribution

PiP 🥋

Polarised Measurements

Photon asymmetry
$$\Sigma$$
 (new SRC sensitive observable):
 $\Sigma = \frac{1}{P_{\gamma}} \frac{\sigma_{\parallel} - \sigma_{\perp}}{\sigma_{\parallel} + \sigma_{\perp}}$ with $\sigma_{\parallel,\perp} = \sigma_0 (1 \pm P_{\gamma} \Sigma)$

Jastrow Correlation: $\psi_{12} = \phi_1 \phi_2 f_c(r_{12})$ $g(k) = \mathcal{F}(1 - f_c)$

trivial correlations:

$$\begin{split} \rho_{\mathsf{NN}}(1,2) &= \\ & \left[\rho(1)\rho(2) - \rho(1,2)\rho(2,1)\right]/2 \end{split}$$

Direct photo absorption:

factorized Xsec in QD and zero range approximation: (Jan Ryckebusch, Phys. Lett. B383 (96); Boato/Giannini J. Phys. G15 (89))

$$\sigma_0 \sim W_{1B}^{M,C}(\boldsymbol{g}) + W_{2B}^{\pi}(\boldsymbol{g}) + W_{\Delta}^{(\text{non})\text{res}}$$

$$\sigma_0 \Sigma \sim \quad \text{dito}(\pm \boldsymbol{g}) + W_{\Delta}^{(\text{non})\text{res}}$$

Additional evidence:

Boffi et. al., Nucl. Phys. A 564 (1993) 473 : ${}^{16}O(\gamma, pn)^{14}N$ A. Buchmann, Leidemann Nucl. Phys. A 443 (85) 726 : $\sigma, \Sigma\{d(\gamma, p)n\}$

Bremsstrahlung (experimental)

Kinematic:

 $q_l^{\min}(E_{\gamma}) = \delta < q_l < 2\delta$ MAMI: $q_t/q_l \approx 10^3$

Cross section:

 $\sigma \sim \frac{1}{k} \cos^2 \phi$

Main contrib: $ec{E} \parallel ec{\epsilon} \in (ec{p}, ec{q})$ plane

PiP 🥋

Incoherent Bremsstrahlung

$\frac{\text{Hubbell Xsec}}{\left(\int^{\theta_c} d\theta_c \text{ Schiff}\right)}$

- more accurate E_{γ}, θ_c, Z dependence than BH
- e^- brems contribution (E_{γ}, Z) , E_B corrected
- møller scattering (~ 5%)

Hubbell, JAP 30/7 (59) 981 Mathews, Owens, NIM 111 (73) 157

MCB: S. Wunderlich, Dipl. thesis, Tuebingen 97

⁴He/¹²C Photon Asymmetry in Comparison

1.0

Low
$$E_{\gamma}$$
:
E1 dominant $\rightarrow \Sigma$ pos
 $E_{\gamma} > \pi$ threshold :
M1 dominant $\rightarrow \Sigma$ neg
(N- Δ transition \sim M1)
 $(\theta_{p} = 90^{\circ})$

0.8 Adamian, F.V. (Yerevan 88) photon asymmetry Liu, F.F. (Phys Rev 138,B1443) 0.6 0.4 0.2 -0.2-0.4 -0.6 + 0 200 300 400 500 600 100photon energy photon asymmetry 0-1.0-12C -0.3 ł 4He -0.4 D -0.5) | 150 200 250 300 350 photon energy

Bonn, Schmitt,Arenhoevel 89 Paris, Wilhelm,Leidemann 88

⁴He \sim D ?

(only subset of data !, calibration not yet finished)

¹²C : FSI or medium SRC effects

$$(50^{\circ} < \theta_p < 130^{\circ})$$

preliminary !!

Angular Dependence of the Asymmetry

 ${}^{4}\text{He}(\vec{\gamma}, \text{np})$ photon asymmetry at $E_{\gamma} = 220$ MeV, perpendicular und parallel polarisation:

PiP 🧌

preliminary !!

Summary

- Previous experiments:
 - reaction mechanisms understood
 - direct 2N absorption separable
- Improved description of polarised Bremsstrahlung
 → reliable determination of degree of polarisations
- Photon asymmetry measurements on ⁴He und ¹²C successfully finished
 - reliable data and high statistics
 - encouraging preliminary results

Prospects

- Continue analysis on all E_{γ} for both (np,pp) channels $\rightarrow (\Sigma)$ in dependence of E_{γ} and ϑ_N
- Better theoretical calculations necessary, in particular ⁴He
 → enhanced cooperation with theorists
 from Gent, Trento, Pavia, Valencia, Tübingen
- High resolution ¹⁶O Experiment (accepted) separat resolved final states allow studying of indivial reaction mechanisms (aimed at E_m resolution of 1.5 MeV)

