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1 Introduction

Polarisation and asymmetry measurements play an increasingly important role

in medium energy physics and have been instrumental in recent progress. In

particular tagged beams of polarised photons have been employed for inves-

tigations of nucleon and nuclear structure. In order to minimise systematic

errors in the interpretation of asymmetries from such measurements it is of

vital importance to determine the photon polarisation as accurately as pos-

sible. This paper deals with the production of polarised photons by coherent

bremsstrahlung in a crystal in which the regular structure of the atoms within

a coherence volume enhances the radiation of polarised photons at certain

energies. Since a satisfactory on-line monitor has not yet been developed, the

polarisation must be deduced from the shape of the bremsstrahlung spectrum

itself. The calculation of the spectrum is the subject of this paper.

The cross section for production of bremsstrahlung on a crystal (cr) is com-

posed of coherent (co) and incoherent (in) parts, �cr = �co + �in, where �
is used as an abbreviation for the cross section di�erential in one or more

of the kinematic variables. The incoherent cross section di�erential in pho-

ton energy k has a smooth, approximately 1/k, energy dependence while the

coherent cross section exhibits structures related to the periodicities of the

lattice. This is illustrated in Figs. 1a and 1b which show a smooth spectrum

from an amorphous nickel radiator and a measured bremsstrahlung spectrum

from a diamond radiator respectively. The former has a shape similar to the

incoherent part of the diamond spectrum. The coherent part can be decom-

posed into two contributions, �co = �?+�k, whose photon polarisation vectors

are perpendicular (?) and parallel (k) to the orientation of a reference plane

de�ned by the incoming electron and the lowest reciprocal lattice vector of

the crystal. Their di�erence �dif determines the photon beam polarisation P :

P = �dif=�cr = (�? � �k)=�
cr =

�? � �k

�? + �k

�
1� 1

R

�
; (1)

where R = �cr=�in. Clearly P is a�ected by both the intrinsic polarisation of

the coherent process and by the ratio R of the crystal and the incoherent cross

sections. Since both the cross sections and the polarisation are obtained from

the same calculation, it is argued here that the polarisation will be reliably

determined, if the calculation describes correctly the detailed structure and

relative intensities of all the measured spectra. This includes a check of the

correct treatment of the incoherent contribution which has in general been

measured using a di�erent amorphous radiator, e.g. a thin nickel foil replacing

the diamond crystal.

Evidently it is very important to reach the best possible description for the

bremsstrahlung spectrum. This is not an easy task, because di�erent radiators,
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electron beam divergence, a �nite beam spot size, multiple scattering in the

target and the e�ect of collimation all need to be modelled correctly.

Many years after the �rst suggestion by Williams [2], systematic work on

coherent bremsstrahlung at relativistic energies was started by �Uberall [1];

this was continued by Diambrini-Palazzi [3] and coworkers at Frascati and

by Timm [4] at DESY. More recently Lohmann [5] and Rambo [6], later

referred to as LR, took up this subject in connection with real photon ex-

periments employing the Glasgow tagging spectrometer [7] at the cw elec-

tron accelerator MAMI [8] at Mainz. The basic treatments of polarisation in

incoherent bremsstrahlung on single atoms were developed by May [9] and

Maximon et al. [10].

The present paper builds on previous work mentioned above (and references

therein) where the Bethe-Heitler bremsstrahlung formalism [11] is the com-

mon starting point. However some approximations made by LR have been

signi�cantly improved in the present work. In particular, taking account of

the energy and Z dependence of the angular distribution for the incoherent

cross section, which was not done in LR, leads to changes of up to �10% in

R and P depending on kinematics. An improved representation of the atomic

form factor is used and the electron-electron bremsstrahlung is also treated in

a more sophisticated way, which again change the magnitude of R. The treat-

ment of photon collimation has also been improved. For the simple case of a

circular collimator an analytical collimation function is derived and the two-

dimensional integral of the coherent intensity over electron beam divergence

is replaced by an analytical approximation. Together these approximations

enable rapid calculations using an analytic code. In order to take full account

of all experimental factors such as an o�-axis or tilted collimator with a �nite

length or a non-spherical beam pro�le and to avoid any of the above approx-

imations, a Monte Carlo program has been written. In contrast to previous

work, both codes include also a proper treatment of the beam energy spread.

Section 2, which presents the most important relations describing the bremsstrahlung

process in a crystal, is based in particular on earlier work [4{6, 9]. A general

discussion of the new features implemented in the present calculations (sec-

tion 3) and a description of the two calculational methods (section 4) are

followed by comparison of the calculations with measurements (section 5).
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2 The bremsstrahlung process in a crystal

2.1 General considerations

Bremsstrahlung is created when fast electrons interact with an electromagnetic

�eld, in particular with a charge. The incoming electron with energy and mo-

mentum (E0; ~p0) emerges with (E; ~p) creating a photon (k;~k) by transferring

a small amount of momentum ~q to a third partner (usually an atomic nucleus

of charge Z). In this paper this process is treated in the extreme relativistic

limit and the nuclear recoil energy is neglected, thus energy and momentum

conservation yield (E0; ~p0) = (E+k; ~p+~k+~q). Natural units (m0 = c = ~ = 1)

are used and in appropriate cases the electron mass m0 is neglected. The de-

composition of the momentum transfer ~q into longitudinal ql and transverse

qt components with respect to ~p0 permits the formulation of limits in their

values which depend on the relative photon energy x = k=E0:

Æ

x
� ql � qmin

l = Æ +
q2t
2E0

(2a)

1 & qt � 0 (2b)

with Æ =
x

2E0(1� x)
(2c)

The lower limits are of kinematical origin and the upper limits are due to the

rapid decrease of the cross section with increasing q. Often the upper limit in

eq. 2a is simpli�ed to ql . 2Æ with the simple assumption of x � 0:5. This

allowed momentum transfer region is referred to as the `pancake' due to its

large transverse extension relative to the tiny longitudinal component.

2.2 The e�ect of the crystal

When the bremsstrahlung cross section is calculated without the summation

over the photon polarisation [12{14], then in the low energy limit the result

obtained is
d�

dk
/ 1

k
cos2 � (3)

where � is the azimuthal angle of the polarisation vector ~� around ~p0 with

respect to the plane (~p0; ~q), i.e. the maximum linear polarisation is found in

the scattering plane (�=0) de�ned by the momentum transfer.

When an electron scatters from a single atom producing incoherent bremsstrahlung

the momentum transfer ~q may lie anywhere inside the pancake, leading to a

uniform azimuthal distribution of the polarisation vector ~� and hence to an
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unpolarised photon beam. When produced on a crystal, however, the regular

structure of the crystal described by the reciprocal lattice basis-vectors ~bk re-

stricts the magnitude and direction of the momentum transfer and thus the az-

imuth of the scattering plane. The only allowed values of the momentum trans-

fer ~q are those which coincide with a reciprocal lattice vector ~g =
P

3

k=1 hk
~bk

for a given set of Miller indices hk=[h1; h2; h3]. The recoil can be absorbed

by a large region within the lattice and the contributions of these atoms add

coherently in the bremsstrahlung process, thus enhancing the yield. As ~g �xes

~q and the photon polarisation tends to lie dominantly in a single plane, a

photon beam with large polarisation can be produced.

When coherent radiation is produced in a crystal the momentum transfer com-

ponents gl and gt for each contributing reciprocal lattice vector are �xed by

the crystal orientation. As the relative photon energy x is increased the lon-

gitudinal momentum transfer at the lower edge of the pancake qmin
l increases

monotonically until it exceeds gl (eqs. 2a and 2c). This leads to a discontinuity

in the photon spectrum at the corresponding energy xd given in eq. 4a.

xd =
�
1 + 1=(2E0gl � g2t )

��1
(4a)

with gl = g1 cos� +
�
g2 cos� + g3 sin�

�
sin� (4b)

and g2t = (g2
1
+ g2

2
+ g2

3
)� g2l (4c)

where gk; k=1,2,3 are the components of ~g in the crystal frame. The orientation
of the crystal 
 = (�; �) with respect to the electron beam axis is de�ned as

in refs. [13] and [5, 6].

The incoherent contribution remains almost constant across the discontinuity

while the coherent strength and thus the polarisation are both much larger

just below it (see Fig. 1b and 1d). Therefore, this photon energy region is the

interesting one for the production of a polarised photon beam.

2.3 The bremsstrahlung cross section

The �ve-fold di�erential cross section �cr for bremsstrahlung production on

a crystal [4, 9] has a main term related to the cross section �am for electron-

nuclear bremsstrahlung from an amorphous sample of the same material and a

smaller term which accounts for bremsstrahlung from the atomic electrons �el,

which was omitted in the previous discussion.

�cr =

2
4 1

Ncell

�
2�

a

�3X
~g

jS(~g)j2ÆD(~q � ~g) � fDW(q2) +
�
1� fDW(q

2)
�35 �am + �el

= �co + �in + �el (5)
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where ÆD is the Dirac delta function, �am =
�
1 � F e(q2)

�
2

�un and �un is the

cross section for an unscreened nucleus.

The factor S(~g) describes the interference of the coherent amplitudes from

the Ncell atoms of the unit cell, whose volume is a3. The atomic form fac-

tor F (q2) =
�
1 � F e(q2)

�
accounts for the screening of the nuclear charge

by the charge distribution of the surrounding electrons. The Debye-Waller

factor fDW(q
2), which depends on the temperature and crystal properties,

describes the in
uence of thermal motion in smearing out the periodicity of

the lattice and gives the fraction of the atoms which radiate coherently. The

remaining fraction
�
1� fDW(q

2)
�
produces incoherent radiation.

A single di�erential cross section is obtained by integrating eq. 5. It is usually

multiplied by x=�� to obtain a dimensionless photon intensity I per atom. The
latter and the polarisation P can be expressed in terms of the functions 	

j
1;2;3

with j = co, in and el

Ij =
x

��

d�j

dx
=
�
1 + (1� x)2

�
	
j
1 �

2

3
(1� x)	j

2 (6a)

P = Idif /Icr = 2(1� x)	3

.�
Ico + I in + Iel

�
(6b)

where �� = �2Z2 = 0:57947 � Z2 mb.

The functions 	co are given below

	co

1
= 4

X
~g
G(~g) Æ g2t g

�2
l (7a)

	co

2
= 24

X
~g
G(~g) Æ2 (gl � Æ)g2t g

�4
l (7b)

	co

3
= �4

X
~g
G(~g) Æ3 g�4l

h
(g2

2
� g2

3
) cos 2�+ 2g2g3 sin 2�

i
(7c)

and G(~g) =
(2�)2

a3Ncell

fDW(g
2) jS(~g)j2F 2

r (g
2)g�4

The angle � is de�ned as the angle between the reference plane (~b1; ~ex) and

the crystal plane (~b1; ~b2) and it is the azimuthal angle of the polarisation

vector ~� (see ref. [6]). For the coherent cross section the atomic form fac-

tor Fr(q
2)=

�
1 � F e

r (q
2)
�
is obtained using a realistic electron charge distri-

bution from a Hartree-Fock calculation for carbon. The details are given in

section 3.1, where the changes compared to the earlier calculations of LR are

also discussed.

The incoherent part of the angle-integrated spectrum from a diamond can

be represented very accurately except near its upper end point by eq. 6a

with constant values for 	in

1
=13.79 and 	in

2
=13.12. These values are obtained

from integrals in eq. 3BS(b) of ref. [15] using a Hartree-Fock form factor and

including the Debye-Waller factor. However it is also important to account
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accurately for the angular dependence of the spectrum shape; this is discussed

in section 3.3.

In treating the electron bremsstrahlung cross section �el, LR rely on a Thomas-

Fermi model screening calculation by Wheeler and Lamb [16], which yields the

constant values 	el

1
=4.05 and 	el

2
=3.94. Improvements to this parameterisa-

tion will be presented in section 3.4.

The amorphous radiator nickel was used here to obtain a smooth reference

spectrum. The standard practice, also adopted by LR, of using the Thomas-

Fermi model to evaluate the atomic form factor, was followed for the calcu-

lation of nuclear bremsstrahlung, but modi�ed to include the improved pa-

rameterisations of the electron-nuclear and electron-electron bremsstrahlung

discussed in other sections. However, in section 5.2 we suggest an improved

method which reduces systematic uncertainties from the calculations and

avoids experimental normalisation problems.

2.4 The angular distribution of the photons

It is important that the photon angular distribution is treated accurately since

of necessity the photon beam is collimated. In fact collimation can be used to

enhance the photon polarisation by taking advantage of the di�erences in the

angular distributions of the coherent and incoherent processes.

Unfortunately, there is no treatment available of the angular distribution of

�am based on realistic atomic screening which reaches beyond an atomic form

factor of dipole type. The dipole form factor represents in momentum space

the Fourier transform of the exponentially screened potential introduced by

Schi� [21]. For a crystal the incoherent cross section �in is also a�ected by the

Debye-Waller factor (see eq. 5) which further complicates the analytical eval-

uation. In this situation LR have resorted to a fairly radical approximation for

the angular distribution of �in. They assume that the shape of �am is indepen-

dent of both Z and photon energy x and approximate the dependence on the

photon polar angle #k by a form for which the fraction of the total intensity

lying at angles below the reduced angle U = (E0#k) is f(U) = U2=(1 + U2).

An improved approach is presented in section 3.3.

For the coherent process the angular distribution is more complicated. The

constraint on the momentum transfer, ~q = ~g, produces a direct relation be-

tween the photon energy x and its angle U1 with respect to the direction

~p1 = ~p0 � ~g, in which the maximum photon energy xd for the lattice vector ~g

is found.

U2

1
+ 1 =

1� x

x

xd

1� xd
=

1� x

x

�
2E0gl � g2t

�
(8)
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The direction ~p1 makes a small angle with the incident electron direction ~p0.

Because the axis of the radiation cone has this angular o�set, photons of a

particular energy x are produced over a small range (� 2gt) of polar angles U

with respect to the electron direction. LR did not take account of the o�set

and obtain a slightly di�erent relation between photon energy and angle, the

e�ect of which is estimated in section 3.2.

Since the energy of the coherent photons decreases with photon angle, collima-

tion can be used to remove the low-energy tail of the coherent peak without

a�ecting the intensity in the peak region itself. The photon polarisation in

the peak region is therefore enhanced by collimation, since it simultaneously

reduces the incoherent intensity at all photon energies and also removes the

overlapping low-energy tails of the coherent peaks produced by higher lattice

vectors. This was shown �rst in ref. [17, 18] and later in refs. [6, 13]. It is also

found that when the beam is collimated the polarisation becomes especially

sensitive to the �nite phase space of the incident electron beam. These e�ects

are treated in the next two sections.

3 Improvements in the present calculations

This section comprises a discussion of the main improvements made in the

formulae used to evaluate the bremsstrahlung cross section viz. i) the parame-

terisation of the carbon form factor, ii) the angular distribution of the coherent

electron-nuclear contribution and iii) the angular distribution of the incoher-

ent electron-nuclear contribution and iv) the parameterisation of the energy

and Z-dependence of the electron-electron bremsstrahlung.

Improvements were also made in the computational treatment of the e�ects

of the �nite phase space of the electron beam on the photon spectrum i.e.

the spot size, angular divergence and energy spread of the electron beam,

multiple scattering in the radiator and the photon collimation process. These

are discussed along with other computational details in section 4.

3.1 The carbon form factor

The shape of the form factor F (q2) =
�
1 � F e(q2)

�
is important because its

magnitude at di�erent values of momentum transfer q in
uences both the

coherent and the incoherent contributions to the cross section.

Timm [4] and LR [5, 6] use a parameterisation of the carbon atomic form

factor by Cromer [19], which however is valid only up to q = 0:1. For q > 0:1
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Timm suggests that the decrease of F e(q2) be approximated by the dipole

form corresponding to a screening potential of exponential shape. However,

LR do not adopt this approximation; they set F e(q2)=const. for q > 0:1,

which causes the incoherent cross section to be underestimated. The present

work uses a parameterisation (eq. 9) of the form factor for a chemically bound

carbon atom valid up to q < 0:3. This was taken from a more recent review by

Maslen [20]. For higher q the form factor is approximated by the dipole form

matched at q = 0:3.

F e
r (q

2) � Z =

8>>>>>>><
>>>>>>>:

4P
i=0

ai exp (�biq2) q < 0:1

exp (
3P
i=0

ciq
i) 0:1 < q � 0:3

d0=(1:+ d1q
2) q > 0:3

(9)

ai= 0:286997; 2:26096; 1:56165; 1:05075; 0:839259;

bi= 0; 9636:006; 278:8644; 4143:134; 23609:35;

ci= 1:7056; �32:30426; 50:50572; �37:38128;
di= 4:1319894; 3731:4571

3.2 The angular distribution of the coherent cross section

To determine the e�ect of collimation on the coherent spectrum, a relation

between the photon energy x and its angle U with respect to the electron

beam is required. Eq. 8 relates x to the angle U1 with respect to ~p1 and the

relation between U and U1 is

U2 = U2

1
(x) + g2t + 2U1(x)gt cos � (10)

where � is the azimuthal angle of the photon around the ~p1-direction. Aver-

aging over this variation one obtains

D
U2(x)

E
= U2

1
(x) + g2t =

1� x

x

xd

1� xd
+ g2t � 1 (11)

When the coherent intensity is integrated over photon angles, the weak de-

pendence of U(x;  k) on the photon azimuthal angle  k with respect to the

electron direction is ignored and the coupling between x and U in the contribu-

tion of each ~g to the triple di�erential cross section and thus to the polarisation
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is accounted for by a Dirac delta function ÆD

d2Ico

d(U2) d k
=

��
1 + (1� x)2

�
�1 �

2

3
(1� x)�2

�
ÆD
�
U2 �

D
U2(x)

E �
(12a)

P (U2)d k =
2(1� x)�4( k)ÆD

�
U2 � hU2(x)i

�
�
1 + (1� x)2

�
�1 � 2

3

�
1� x

�
�2

(12b)

The � functions are given in ref. [6]. They are related to the 	co functions via

an integration over U2 and  k.

The photon intensity spectrum after collimation to the angle Uc is

Ico(Uc; x) =
Z U2

c

0

d(U2)

Z
2�

0

d k
d2Ico

d(U2) d k
= Ico(x)�(x� xc) (13)

where � is the Heavyside step function, which arises through the ÆD-function
in eqs. 12. The Heavyside function incorporates the photon energy-angle rela-

tionship (eq. 11) which removes photons of energy less than xc , where

xc =

 
1 +

U2

c + 1� g2t
2E0gl � g2t

!�1

=
xd

1 + (U2
c � g2t )(1� xd)

(14)

Omitting the gt terms in eqs. 4a and 14 as done by LR causes a shift of xc
and xd by typically 1% at electron beam energies of 855 MeV, the standard

setting at the MAMI facility in Mainz. Because many di�erent lattice vectors

contribute to the total spectrum, individual variations of these discontinuities

cause a distortion of the spectrum.

3.3 The angular distribution of the incoherent cross section

A good approximation to the angular and energy distribution from an amor-

phous radiator has been obtained by Schi� [21,22] using an exponential screen-

ing potential, (Ze=r) exp(�rZ1=3=C), which is equivalent to approximating the

form factor F e by the dipole form

F e
d (C; q

2) =

�
1 +

�
qCZ�1=3

�
2
��1

(15)
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The resulting photon intensity is

dIS

d(U2)
=
�
1 + (1� x)2

�
�S
1
� 2

3

�
1� x

�
�S
2

(16a)

�S
1
= 2v2

�
M(v)� 1

�
(16b)

�S
2
= 6v2

�
1 + (2M(v)� 8)(1� v)v

�
(16c)

with v = 1=(1 + U2); M(v) = � ln

"
Z2=3

C2

�
Æ2z + v2

�#
(16d)

and Æz =
CÆ

Z1=3
(16e)

The constant C was evaluated as C=111 in refs. [15,22] by normalising the to-
tal bremsstrahlung intensity from the Schi� formula (eq. 16) to that predicted

by the Bethe-Heitler cross section.

In Fig. 2 the Schi� formula is compared with the approximation used by LR,

namely an angular distribution shape independent of photon energy multi-

plied with the integrated-over-angle Bethe-Heitler cross section. The compar-

ison shows that this approximation does not adequately represent the cross

section and it will necessarily produce errors in the calculation of the colli-

mated intensity. Although the Schi� formula does not incorporate the realistic

carbon form factor Fr, it should provide the basis for an improved treatment

of I in compared to that used by LR.

However, it is �rst necessary to take account of the e�ect of the Debye-Waller

factor, which leads to an e�ective form factor F (q2)
q
1� fDW (q2) in the inco-

herent process. The analytical integration over electron angles leading to the

Schi� result is not possible with this modi�ed form factor and therefore an ap-

proximate method of including the Debye-Waller factor was investigated [14].

This relied on using a modi�ed screening constant C in the Schi� cross section

to represent its e�ect. The values of C are found for whichZ
d� IS(C) =

Z
d� IBH(1� fDW )F 2

r (17)

where d� = sin�
d�
 d�C d�. The calculations were carried through using

the Monte Carlo integration code VEGAS [23]. For a crystal at room tem-

perature the Schi� spectrum with C = 30:4 represented energy and angle

dependence of the full calculation using the realistic form factor and includ-

ing the Debye-Waller factor to better than 0.5%. The Schi� spectrum with

modi�ed C is computationally convenient and was used in all subsequent cal-

culations. The e�ect of the temperature dependence of the Debye-Waller factor

was determined and it was found that the temperature of the diamond, T (K),

can be taken into account using a temperature dependent screening constant

C = 27:24 + 0:0108 T/K.
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The form factor and the e�ect of the Debye-Waller factor are shown in Fig. 3.

The arrows indicate the momentum transfers in a diamond radiator responsi-

ble for the two most prominent peaks in the coherent spectrum. The realistic

form factor Fr is not well represented by the approximate form Fd suggested

by Schi� when using the standard value C = 111 [21]. However, by using the

value C = 71 as suggested by Timm [4] a good �t can be obtained at the higher

q values which are of importance in calculating the incoherent spectrum, al-

though the Debye-Waller e�ect is not included. The lower part of the �gure

shows the reduction due to this factor, (1 � fDW ). One sees that the dipole

form factor with C = 35 describes the realistic form (1� fDW )F 2

r reasonably

well.

To visualise the in
uence of the form factors on the amorphous and incoherent

cross sections, weighting functions suggested in ref. [15]

wq(q) =
d

dq

 
d�3BSb

dx

!
(18)

have been calculated and are presented in Fig. 4. These point out the relative

importance of di�erent regions of q in the integrals which determine the cross

section over a much larger q-range than shown in Fig. 3. The average q values

contributing to the integrals (at Mainz energies) are marked by arrows in

Fig. 4, which demonstrate that, as a result of the Debye-Waller factor, the

mean q-value for the incoherent process in diamond is signi�cantly higher

than that for amorphous carbon.

A convenient feature of the Schi� cross section (eq. 16) is the availability of

an analytic form [22] integrated over photon angle up to a maximum angle #c,

which can be the collimator angle. The result in terms of vc = 1=(1 + U2

c ),

which is used in the present calculations is

	S

1
= 2

h
1 +M(1)� (1 +M(vc))vc � c

i
(19a)

	S

2
= �40

3
v3c + 18v2c �

�
8Æ2z + 6

�
vc + 8Æ2z + 2M(1) +

4

3
(19b)

+
�
4v3c � 6v2c

�
M(vc)� 6Æ2z

�
M(vc)�M(1) +

2

3
c

�

with c = 2Æz arctan

 
1� vc

Æz + vc=Æz

!
(19c)

These functions can represent either amorphous or incoherent intensities de-

pending on the screening constant C entering M and Æz.

In Fig. 5 the photon intensity spectra within di�erent collimation angles Uc are

displayed, normalised to unit area to allow better comparison of their shapes.

The non-trivial dependence of the intensity on the collimation angle is poorly
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described by an energy-independent reduction factor f(Uc). The use of the

latter would lead to a incorrect collimated incoherent intensity and hence to

an inaccurate polarisation.

3.4 The electron-electron bremsstrahlung

In experiments the shape of the photon spectrum produced on an amorphous

nickel radiator is measured and used to remove the main photon energy depen-

dence o� spectra from the diamond radiator. Because the relative contribution

of electron-electron bremsstrahlung is signi�cantly di�erent for the two radi-

ators, it is important that its energy and Z dependence is properly accounted

for. Formulae for 	el

1
and 	el

2
are taken from ref. [15]. They are based on

the Fermi-Thomas model using the extreme relativistic approximation but do

account for the atomic electron binding.

	el

1
=

1

Z

�
 (�)� 4� 8

3
lnZ

�
= 	el

2
� 2

3Z
(20a)

 (�) =

8<
: 19:19� 4 ln � for � � 0:88P

5

n=0 en(0:88� �)n for � < 0:88
(20b)

with � =
100

E0Z2=3

x

1� x

and en = 19:7; 4:177;�3:806; 31:84;�58:63; and 40:77:

The parameterisation of  (�) is taken from ref. [24].

4 The improved calculations and the codes

Up to now an ideal electron beam and a thin radiator was assumed, which

can not be realized in actual experiments. Realistic beams are extended and

divergent and the radiators have �nite thickness, therefore the respective dis-

tributions and side e�ects must be accounted for in proper modelling. The

coherent contribution is more a�ected by the experimental conditions than

the incoherent one, especially when the beam is collimated [6,13,17], and the

following discussion emphasises this case. A �nite electron beam spot size (BS)

on the radiator has the same e�ect as a collimator with a fuzzy edge: both

produce a smeared cut-o� in the photon spectra at xc (eq. 14).

It is advertised, that variations of the yield calculated for realistic cases are

mainly due to changes in polar and azimuthal angles with respect to the beam
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axis z. The characteristic angle is 1/E0 and thus in the order of mrad. Gener-

ally, the angle changes are also small and thus the small angle approximation

is valid, which simpli�es the transformation between the crystal and the (in-

cident) electron coordinate system. Furthermore, distributions can be de�ned

in the (x,y) plane perpendicular to the beam axis.

The angular divergence of the electron beam (BD), described by wBD(a), also

smears the discontinuity at xc. In addition, it smoothes the discontinuity at

xd, because the crystal orientation with respect to the electron direction varies

from its nominal setting 
 in the laboratory system. This in turn changes

the photon intensity due to the dependence of the momentum transfer on

the crystal angles. The beam angular distribution wBD is assumed to be of

Gaussian shape with variances �ax and �ay, in horizontal and vertical direction

wBD(a) = wBD(ax; ay) =
1

2��ax�ay
exp

0
@� a2x

2�2ax
� a2y
2�2ay

1
A (21)

Vector a and the modulus of the momentum represent the initial electron

before reaching the radiator. Here, underlined vectors denote the transverse

components of the respective vectors. They represent also the respective polar

and azimuthal angles.

The overall angular spread of the electrons is further increased because the

electron undergoes many small-angle scattering-processes (MS) mainly due to

Coulomb interaction with atoms while traversing the radiator of thickness zR.
The Moli�ere theory [25, 26] describes the distribution wMS(m; z) of m, the

transverse component of the direction vector which the electron acquires due

to multiple scattering after reaching a depth z inside the radiator. It is ap-

proximated by Gaussians with variances �mx = �my = �m.

Structures in the coherent bremsstrahlung spectrum are also broadened by

the electron beam energy spread (ES) around the nominal energy E0, which

is parameterised by the distribution wES(
�

E0), again with assumed Gaussian

shape

wES(
�

E0) =
1q
2��2E

exp

0
@�

�
�

E0 �E0

�2
2�2E

1
A (22)

Finally, the assumed form of the beam spot distribution wBS(s) is the same
as wBD but with variances �sx and �sy, respectively.

The experimental photon intensity results from folding of all these e�ects

weighted with the appropriate distributions. Usually a collimator with ra-

dius rc is situated at distance zc to de�ne the photon 
ux on the experimental

target. Due to the complicated dependence of ~r
 on all integration variables
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of eq. 23 the collimation condition for photons passing through the collima-

tor r
 < rc leads to topological non-trivial integration limits.

Iexpc =
1

zR

Z
ES

d
�

E0

Z
BS

d2s
Z zR

0

dz
Z
MS

d2m
Z
BD

d2a

� wES(
�

E0)wBS(s)wMS(m; z)wBD(a) � Ico
�

; e(a;m)

������
r
<rc

(23)

Note that the evaluation of the coherent contribution Ico accounts for the

crystal orientation and the actual electron direction e at the time of interac-

tion. It is evident that the evaluation of this integral calls for a Monte Carlo

treatment.

4.1 Description of the Monte Carlo program MCB

The Monte Carlo method is well established for simulation of complex pro-

cesses in nuclear physics. Eq. 23 with its interrelated boundary conditions is

an excellent example. Measured electron beam parameters and their standard

deviations as well as radiator and collimator properties are the basic input. For

each incoming electron, a particular set of physical values is chosen randomly

in the parameter space appropriate for the investigation. First the energy
�

E0,

hence the momentum of the incident electron, its impact position s and direc-

tion a are chosen from the Gaussian distributions de�ned previously, and its

polar and azimuthal angles, �a and �a with respect to the ideal beam direc-

tion ~p0 and the (~p0,ẑ) plane are obtained. The depth z of the bremsstrahlung

process inside the radiator is then taken from a uniform distribution within the

radiator thickness zR because the attenuation of the beam inside the radiator

is still negligible. The width �m of the multiple scattering angular distribution

is determined at this depth and the multiple scattering angles m(�m; �m) are
chosen next: �m from the Gaussian distributions wMS(m; z) and �m from a

uniform distribution. The electron eventually obtains the �nal incidence an-

gle e(�e; �e) = a+m which is then given by

�2e = �2a + �2m + 2�a�m cos �m (24a)

�e = �a + arcsin (�m=�e � sin�m) (24b)

since the small angle approximation can be used for all polar angles.

To calculate the coherent cross section for the chosen electron parameters it

is mandatory to �nd the crystal orientation 
e(�e; �e) with respect to the

actual electron direction e which is modi�ed by the distributions of beam

divergence and by the multiple scattering at the chosen depth within the

crystal. This is related to the crystal orientation 
(�; �) in the laboratory
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system by 
e = 
+ e or

�e =
q
�2 + �2e + 2�e� � cos(�e � �� �) (25a)

�e = � + arcsin (�e=�e � sin(�e � �� �)) (25b)

The angles of the produced photon are described by 
 = (�k;  k) in the lab-

oratory system, which is obtained from the emission angle in the electron

system 

e
by 
 = 


e
� e.

Next, a lattice vector is chosen randomly from the set, which spans the volume

of reciprocal space V~g =
Q
3

k=1(2h
max

k + 1) up to the Miller indices hmax

k . The

coherent cross section Ico(~�) e.g. is calculated with this parameter vector ~� =

(h1; h2; h3;
; m; s; z; 
; a; x). The cross section is di�erential in photon energy

and both photon angles, the azimuthal angle  k and the polar angle #k.

The integration of eq. 23 is carried out by a Monte Carlo procedure (see

ref. [23]). Accepted parameter vectors ~� are stored in list mode for subsequent

plotting or further investigations. In addition a key is also stored whether the

emitted bremsstrahlung photon has passed the collimator:

r
(z = zc) < rc

r
(z = zc + lc) < rc

9>=
>;with r
(z) = js+ z
 � scj (26)

Here rc; zc and lc denote the radius, the distance to the radiator and the

length of the collimator, respectively. As seen from the above formulae an ideal

collimator is assumed without any rescattering of the photons. A misalignment

of the collimator by sc is accounted for by an equivalent shift of the beam spot.

For the incoherent case the same procedure is applied and the same param-

eter sets are employed. Finally, standard analysis software such as PAW or

ROOT is used to process the various list mode data and to combine them for

histogramming.

4.2 Description of the ANalytical Bremsstrahlung code (ANB)

The calculation of the photon energy dependence of the polarisation with full

consideration of all experimental conditions by the Monte-Carlo method out-

lined above is very time-consuming. The procedure can be accelerated dras-

tically by applying some approximations to obtain an analytical expression

for this 8-fold integral. This approach (ANB) is useful in particular for survey

studies. For results with full precision and without any approximations, the

Monte Carlo version (MCB) can be run subsequently with parameters in the

neighbourhood of the optimal set found by ANB.
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The following approximations are applied to derive an analytical expression

for eq. 23:

i) Only vectors with the strongest coherent contribution within a chosen vol-

ume of reciprocal space V~g are included in the calculation.

ii) All two dimensional transverse distributions are assumed to be Gaussian

in shape with azimuthal symmetry. For example, the beam angular distri-

bution (BD) becomes

wBD(ax; ay) =
1

2��2a
exp

0
@� 1

2�2a

�
a2x + a2y

�1A (27)

where �2a = �ax�ay.

iii) A mean multiple scattering (MS) variance ��2m is obtained from the vari-

ances �2m averaged over the crystal thickness.

iv) An overall electron angular distributionwED(e) with variance �
2

e = �2a+��2m
is obtained by folding the MS and BD distributions.

v) For the calculation of the collimated photon spectrum, the e�ects of the

beam spot size, beam divergence and multiple scattering are combined into

a Gaussian angular distribution wCB(�) of the reduced photon angle �, with
variance �2c = �2e + �xs�

y
s=z

2

c .

vi) The energy spread in the incident electron beam is neglected.

4.2.1 Selection of lattice vectors

For each lattice vector within V~g the coherent intensity is calculated at the

discontinuity xd(~g) via

Ico
max

(~g) =
�
1 + (1� xd)

2
�
	co

1
(~g; xd) (28)

Note, that 	co

2
vanishes at xd. The relative importance depends on crystal

orientation, but, in general out of typically 104 the 30 strongest contributions

make up more than 99% of the total intensity.

With these approximations eq. 23 is reduced to a single integration over the

electron angular distribution subject to the condition that the radiated pho-

tons pass through the collimator

I
co

= �~g

Z
d2e wED(e) I

co(
e = 
 + e)

�����
r
<rc

: (29)
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4.2.2 E�ects of the electron angular distribution on the coherent spectrum

When the electron passes through the crystal at a di�erent angle, the coherent

intensity Ico is a�ected because the value gl in eqs. 7a-c is modi�ed (note,

that g2t = g2 � g2l ). To obtain the uncollimated coherent spectrum (from

eq. 29 without the condition r
 < rc), the electron angle e is resolved into

components, ek in the ~g; ~po plane and e? perpendicular to it. The change in

gl due to e? is of second order and can be neglected. The in-plane rotation ek
produces a change, �gl = gt sin ek+ gl(1� cos ek) which can be approximated

by �gl = gtek because ek is small. Inserting the Gaussian form of wED, carrying

out the integral over e? and substituting ek = �gl=gt, eq. 29 simpli�es to

I
co

=
X
~g

Z g�gl

Æ�gl

d(�gl)
1

gl�e
p
2�

exp

�
�(�gl)

2

2g2t �2e

�
Ico
�
gl +�gl)

�
(30)

in which the lower limit of integration re
ects the pancake condition.

The functions 	co which appear in Ico contain terms proportional to 1=gnl with
n=0,1,..,4. To obtain an analytical form for the integral in eq. 30 the Gaussian

is approximated by the function

wl(l) � w2(l) =

8<
:

3

4�2

�
1� l2

�2
2

�
jlj � �2

0 else
(31)

with �2 =
p
5gt�e chosen to ensure that the rms width is the same for both

functions.

A further minor simpli�cation is obtained by noting that gl � g except for

the highest photon energies so that the factor (g2 � g2l ) in the numerator of

eqs. 7a and b can be treated as constant. From eq. 2 it follows that for the

lowest lattice vector in diamond at E0=855 MeV the ratio (gl=g)
2 is 2�10�4 at

x=0.5 rising to 2�10�2 at x=0.9 and still smaller values are obtained for higher
lattice vectors or for higher electron energies. Carrying out the integrations in

18



eq. 30 one obtains by help of eq. 31

	
co

1
= 3

X
~g

GÆg2t
1

�3

����(g2l � �2)
1

f
+ 2gl ln f � f

����f=l2
f=l1

(32a)

	
co

2
= 18

X
~g

GÆ2g2t
1

�3

�����(g2l � �2)
Æ

3f 3
+ (

g2l
2
+ glÆ �

�2

2
)
1

f 2

�(2gl + Æ)
1

f
� ln f

����f=l2
f=l1

(32b)

	
co

3
= �3

X
~g

G
Æ3

�3

��
g2
2
� g2

3

�
cos 2�+ 2g2g3 sin 2�

�

�
����(g2l � �2)

1

3f 3
� gl

1

f 2
+

1

f

����f=l2
f=l1

(32c)

where the limits are

l1 = max(Æ; gl � �) and l2 = min(g; gl + �) (33)

the de�nition of l1 re
ects the pancake condition.

4.2.3 Collimation

If the e�ects of beam spot size, beam divergence and multiple scattering are

ignored, there is an almost exact correlation given by eq. 11 between photon

angle and energy in the coherent peak. In that approximation the e�ect of

collimation at angle Uc is to remove photons with energies less than xc given
by eq. 14. However, the processes mentioned above do produce an additional

angular spreading of the coherent photons described here by a Gaussian distri-

bution wCB(�) and this smears out the cut-o� of the coherent peak at photon

energy xc.

It is a reasonable approximation to ignore the correlation between the changes

in photon energy and angle produced by a change in electron direction. Then

the collimated energy spectrum can be written

Ico
ANB

(x) =
X
~g

Ico(x) � C(U(x)) (34)

where the collimation function C(U(x)) is obtained by integrating the dis-

tribution wCB(�) to �nd the fraction of photons starting at angle U , which
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remain within angle Uc. The result is

C(U) = �(Uc � U)
Z Uc�U

0

� d�wCB(�)

+

Z Uc+U

jUc�U j
� d�wCB(�)

1

�
arccos

0
@�2 + U2 � U2

c

2�U

1
A (35)

The �rst term can be rewritten as:

�(Uc � U)
h
1� exp(�(Uc � U)2=2�2c )

i
(36)

whereas the numerical integration of the second term in eq. 35 has to be carried

out for a range of values of U to determine the energy dependence C(U(x))

using eq. 14.

The treatment of collimation in the case of incoherent bremsstrahlung works

analogous, but the di�erent angular dependence leads to an integral (note,

that v = 1=(1 + U2

c ) ):

I in
ANB

(x) =
Z
dv c(v)I in(v; x) with c(v) =

1

2v
p
v � v2

dC(U)

dU
(37)

which contains the collimation function C(U) de�ned in eq. 35. Therefore, a

single collimation function accounts for the experimental resolution in both

cases of coherent and incoherent bremsstrahlung production. According to

these derivations, C(U) and c(v) have to be calculated numerically only once

and the remaining evaluation of the intensities is a closed analytical calculation

(apart from the ES folding) providing results very fast at only a tiny loss of

accuracy.

The collimation function C(U) is plotted in Fig. 6a for one collimation angle

Uc = 0:94 and for several values of the variance �c. The increase in di�use-

ness with increasing �c is evident. In Fig. 6b the e�ect of collimation on the

polarisation is demonstrated. For the ideal case with no additional angular

spreading (solid thin line), the collimation cuts o� the intensity below xc for
each of the lattice vectors. The degree of polarisation is increased compared to

the uncollimated case (solid thick line) due to the di�erent angular distribu-

tions of coherent and incoherent processes. The considered e�ects of multiple

scattering, electron divergence and beam spot size on the collimation function

modify the lower discontinuities xc as demonstrated by the dotted line which

results from a calculation with �c = 0:3.

Speci�c contributions to the spectra and the e�ects of particular processes

can be studied in detail. For example, Fig. 7 contains results from an ANB

calculation of the coherent contributions to the photon intensity produced

by a 855 MeV electron beam (parameters from Table 1, set A). The three
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most dominant contributions, which are due to the lattice vectors [022], [044]

and the triple of [066]; [022] and [004], are shown for a calculation assuming

vanishing variances for beam spot size and divergence. The dashed lines show

the individual contributions which all extend to low photon energies. At the

maximum of the dominant [022] intensity the other lattice vectors contribute

about 5% to the total (full line). The e�ects of beam divergence and beam spot

size are best visible for collimated intensities (see insert of Fig. 7). Collimation

of an ideal beam leads to sharp structures bounded by xc on the low and xd
at the high energy side. The insert demonstrates separately the e�ects on xc
and xd; the smearing by BD and MS around the discontinuity xd is shown

by the dotted line and the dashed curve demonstrates the modi�cation of the

intensity around the lower cuto� xc due to BS, BD and MS. All these e�ects

combined (full line in insert) decrease the coherent intensity and thus the

polarisation and to some extent reduce the advantage gained by collimation.

5 Results

Before discussing applications, a comparison of results from the two codes is

presented in Fig. 8 for the cases of an uncollimated photon beam (left panel)

and a collimated beam (right panel). The calculations were performed for a

typical experimental condition at MAMI with E0=855 MeV, with the upper

edge of the main coherent peak placed at 220 MeV. The parameters of the

beam and of the radiator are summarised in Table 1, set A. Coherent and

incoherent intensities are shown in Figs. 8a and 8b. The MCB results are

displayed as histograms while those obtained with ANB are shown as thin

lines. The only signi�cant di�erences between the coherent intensities occur

at the highest photon energies, because the number of higher order lattice

vectors in ANB is reduced to 20 for computational speed (12 hours for MCB

vs. 2 minutes for ANB). The incoherent intensities are given with (dashed) and

without electron contribution (solid line). This di�erence is less pronounced

for the amorphous case as for nickel (Z = 28, dot-dashed and dotted lines in

Fig. 8a).

The agreement of the polarisations from the two codes (Fig. 8c and 8d) is

as good as would be expected given the agreement between the coherent in-

tensities. The polarisation, by itself proportional to a di�erence of polarised

cross sections, is particularly sensitive to approximations at the discontinu-

ities which is bourne out in the di�erence spectra at the bottom (Figs. 8e

and 8f). The di�erences between the codes at xd amount to less than 10% of

the maximum polarisation and less than 1% elsewhere. Di�erences between

the coherent cross section are in the order of 1% and therefore no plot is pre-

sented here. It can be concluded that both codes produce spectra of the same

quality for the present experimental conditions.
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The advantage of having all observables available in the MCB code is demon-

strated by a two-dimensional plot of the polar and azimuthal angular variation

of the photon intensities (Fig. 9). This distribution shows clearly a � cos2  k
dependence and is instructive for the design of photon collimators. For a circu-

lar collimator the chosen radius is a compromise between cutting out valuable

coherent yield at some azimuth and accepting incoherent at others. A rect-

angular collimator (dotted line) might achieve a higher polarisation, although

it would have to be rotated by 90o each time the polarisation was rotated by

90o (this is done frequently during measurements to reduce systematic errors).

Fig. 9d shows that the improvement in the polarisation is not signi�cant except

where its magnitude is already low. A misalignment of a (circular) collimator

primarily reduces the photon 
ux and photon polarisation.

A comparison of the ANB calculations to the experimental spectra has been

given already in Fig. 1, and Fig. 8 shows that the MCB code gives almost iden-

tical results for these spectra. The amorphous (incoherent) bremsstrahlung

spectrum on nickel (Fig. 1a) as well as the total spectrum on a 100 �m dia-

mond (Fig. 1b) are soundly described by ANB over the whole measured photon

range from 40 to 800 MeV. The ratio of these spectra (Fig. 1c) is more sen-

sitive to details of the coherent contribution and the calculation does show

failings at the highest photon energies due to a restricted number of lattice

vectors, but the region of the highest polarisation around the dominant lattice

vector [022] is well described.

In Fig. 10 comparison is made between ANB calculations and four measure-

ments of the crystal intensity spectra Icr. Three were obtained during \tagging
eÆciency" measurements in a 4He(~
,np) experiment at Mainz and the fourth

is from the TAGX facility [27] which used a thicker crystal and had a larger

beam divergence than at MAMI. The respective parameters are listed in Ta-

ble 1, sets A-D. In each case the complete spectra are described very well. The

�ndings provide con�dence that all essential e�ects have been accounted for.

Measurement of the polarisation of a photon beam is a diÆcult task and

only one measurement [6] exists that can be used to check the calculations

of P . This was made at photon energies around E
 � 300 MeV using the

coherent 4He(~
; �0) reaction which has a known photon asymmetry, � = 1:0.
The results for two di�erent collimation angles #c = 0:5 mrad (Fig. 11a)

and #c = 0:7 mrad (Fig. 11b) are compared to ANB calculations and good

agreement is obtained. In the present calculations this agreement follows from

using measured beam parameters, whereas in the earlier calculations reported

in Ref. [6] it was necessary to increase the beam divergence by a factor 2 to

obtain agreement. Fig. 11 shows that a 10% increase is gained using the smaller

collimator but only at the expense of a considerable reduction in intensity

which is responsible for doubling the error bars in the polarisation.
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Fig. 12 presents calculations of the crystal intensity spectra Icr and polar-

isations P which can be expected in three future facilities using coherent

bremsstrahlung on a diamond. The electron energies are E0 = 1.5 (MAMI C),

6 (Je�erson Lab) and 25.3 GeV (ELFE). In general, the degree of polarisation

available increases slowly with electron energy.

5.1 Study of sensitivity

The photon polarisation depends on the electron beam properties and on the

thickness and the angular positioning of the crystal. To determine the precision

required in the values of these parameters, the sensitivity of the polarisation

to each parameter was estimated. A set of nominal experimental parameters

corresponding to the conditions at MAMI B was chosen, which produce a

coherent peak with its cut o� at E
=220 MeV. These parameters correspond

to set A of Table 1 and are listed as X0

i in Table 2. The polarisation spectrum

was calculated for the nominal values X0

i and for a sample of surrounding

values changing only one parameter each time. For each spectrum an average

polarisation P was calculated in the region between the upper cut o� xd of the

peak and the lower energy at which the polarisation fell to half its maximum

value. The results are presented in Table 2 as the absolute change �Xi, which

produces a 1% relative change in P .

The polarisation shows strongest sensitivity to the angular settings of the

crystal but even so the corresponding precision required for the vertical and

horizontal rotations of the goniometer is only �0.1 mrad, which is readily

achieved. A similar accuracy in mounting the crystal is not necessary, since

the angular o�sets are determined in initial calibrations. The thickness of the

diamond is only important when a narrow collimator is used and even then the

required precision is not demanding. At Mainz, because the beam phase space

is small, the polarisation is not much a�ected by the beam spot size and the

beam divergence only begins to have a large in
uence if narrow collimation is

used.

These comments are of course only appropriate for the speci�c conditions,

which have been found for the experiments with coherent bremsstrahlung at

Mainz. The conclusions are likely to be di�erent for radiators of very di�erent

thickness or for di�erent beam energies or qualities.

One parameter not mentioned above but crucial if high polarisation is to be

obtained, is the structure of the crystal. The structure must not change over

the part of its volume sampled by the electron beam. Suitable high quality

crystals, which satisfy this condition, have been selected by X-ray scattering

measurements. No attempt has been made to incorporate the possible e�ects
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of crystal imperfections into the MCB or ANB codes.

5.2 Polarisation extracted from yield

It is rarely possible to measure the photon polarisation in parallel to the ac-

tual experiment; usually it is extracted from o�ine analysis of the data. As

discussed above, during so-called \tagging eÆciency runs" a lead glass scintil-

lator in coincidence with the tagging spectrometer measures the cross section

as function of photon energy. To determine the photon polarisation within

the standard procedure, the incoherent part of the measured bremsstrahlung

spectrum on a diamond is subtracted by substituting it directly with the

amorphous spectrum from a nickel radiator. Further analysis relies on the cal-

culations, and from the agreement for the structures in the coherent part the

excellence of the calculated polarisation is inferred. This method was used so

far for most of the analyses of experiments with linearly polarised photons at

Mainz.

Three more precise procedures are indicated below, all of them rely on accurate

calculations of the various contributions. The �rst one uses only the cross

section �exp
D

measured with the diamond crystal. The polarisation PY can be

extracted online by help of model calculations through expanding the basic

eq. 1 with �co = �cr � �in � �el and rearranging

PY =
�dif

�cr
� �

cr � �in � �el

�co
=
�dif

�co
� �

exp

D
� �in � �el

�exp
D

(38)

where on the r.h.s only �cr is replaced by �exp
D

while the other cross sections are

taken from the calculations. The success of this method depends on the quality

of the description of the measured spectrum and the fact that �dif as well as �co

are related to the crystal structure. The results of this procedure are shown in

Fig. 13. In the upper �gure the coherent cross section �co
Y
= �exp��in��el (full

line) is compared to a calculation (dashed line), whereas in the lower �gure

the respective polarisations have been plotted. The experimental intensity

spectrum is produced within a 220 MeV run at MAMI. The calculation with

slightly di�erent crystal orientation was performed in order to demonstrate

that slight misalignments still produce accurate polarisations. The agreement

between the two polarisations is excellent. Only above the discontinuity the

contributions of other lattice vectors cause a di�erence, but this region in

general is not considered for analysis.

This �rst method can be used o�ine for the collimated photon spectra and also

online for the uncollimated ones. The tagging spectrometer provides the free

running rates of the focal plane detectors and thus the uncollimated photon

spectrum. In the later case the calculation has also to account for the e�ects
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of collimation, however, the data are being taken in a single run which reduces

systematic uncertainties, particular that from the normalisation at extremely

low beam intensities.

The second method relies on collimated spectra which are obtained from tag-

ging eÆciency runs for diamond crystals as well as for amorphous radiators.

This time also the incoherent contribution is replaced by measured yields af-

ter corrections for electronic contributions and for other di�erences in the

radiators

PT =
�dif

�co
� �

exp

D
� �exp

Ni
� f

�
exp

D

(39)

with f = 1�
 
(�am + �el

Ni
)� (�in + �el

D
)

�am + �el
Ni

!

Note, that proper choice of the radiator thicknesses makes f close to 1 because

the cross section pairs (�am, �in) and (�el
Ni
, �el

D
) cancel each other roughly due

to their similarity in shapes.

Even better cancellation can be achieved by using the same diamond crystal,

however in such orientation to not produce any coherent contribution in the

region of interest. A study of this third method, which uses only one radiator

however in two orientations, will be reported in a forthcoming paper.

The advantage of using uncollimated data (i.e. the electron rates in the focal

plane detectors) rests in the high rates observed in free-running electron coun-

ters and thus in high statistical accuracy. Collimated photon spectra resemble

the 
ux in the reaction target more closely; their bene�t is slightly reduced

by the fact, that the data are taken at di�erent exposure times and at possi-

bly di�erent electron intensities. However, the combined overall agreement of

indirect and direct determination of polarisation gives high con�dence in the

suggested methods.

6 Summary

The calculation of bremsstrahlung spectra from amorphous radiators and lat-

tices has been greatly improved. This was achieved by accounting properly for

angular and Z dependences of the basic processes. The new analytical code

permits quick studies of symmetric cases at a small loss of precision. For non-

symmetric conditions or �nal con�gurations, the Monte Carlo provides the

full precision from calculations without approximations. Due to the list-mode

type output the collimation studies can be performed without repeating the

time consuming calculations themselves.
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Finally, excellent agreement with the photon spectra measured under vary-

ing conditions at di�erent laboratories was achieved. This fact permits the

extraction of the polarisation of the photon beam from the intensity spectra

themselves and its use in experiments. The sensitivity to crystal orientation

and thickness has been examined.
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Tables:

Table 1

Parameters for calculations of bremsstrahlung spectra at di�erent electron ener-

gies E0 and crystal orientations �; �.

E0 � � �x �y �px �py dr �c

Set MeV rad rad mm mm mrad mrad mm mrad

A 855 0.0607 0.694 0.2 0.06 0.084 0.084 0.1 0.564

B 855 0.0607 0.662 0.2 0.06 0.084 0.084 0.1 0.564

C 855 0.0607 0.600 0.2 0.06 0.084 0.084 0.1 0.564

D 1160 0.1501 0.8179 0.1 0.1 0.39 0.39 1.1 1.13

E 25300 0.03 0.77 1.0 1.0 0.01 0.01 0.1 1

Table 2

Sensitivity of the calculated average polarisation P to various experimental param-

eters Xi for three di�erent collimator diameters (rc) and the uncollimated situation

(rc=1). The deviations �Xi which cause an uncertainty of �P=P=0.01 are listed.

�Xi for �P=P=0.01

Xi X0

i rc / mm

1.5 2.5 4.0 1

� 60.7 mrad 3.4 3.4 3.4 3.4

� 694 mrad 5.9 5.2 4.9 4.6

zR 100 �m 14 50 250 200

�xs 0.20 mm 0.67 1.00 2.00 -.-

�
y
s 0.06 mm 0.20 0.30 0.60 -.-

�
x;y
a 160 �rad 34 123 229 -.-

zc 2.5 m 0.23 0.15 0.28 -.-
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Figure 1. Predictions obtained with the analytical code are compared to measured

bremsstrahlung spectra, a) �am for a 4 �m nickel radiator, b)-d) �cr, Rcr and P for

a 100 �m diamond. The electron beam energy is 855 MeV.
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Figure 2. The angular distribution of bremsstrahlung from amorphous carbon for

two photon energies (x=0.1 and 0.8): Schi� formula (eq. 16 { solid line), LR ap-

proximation (f(U)�integrated-over-angle Bethe-Heitler intensity { dashed line) The

angular distribution f(U) is normalised to the Schi� intensity for comparison.
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Figure 3. The 12C realistic form factor from ref. [20] is compared to the dipole

form factor which was calculated with a screening constant of C = 111 from a

Thomas-Fermi model [21] and with C = 71 as suggested by Timm [4]. The De-

bye-Waller factor suppresses the form factor signi�cantly at low q-values, which

are of little importance for the incoherent cross section (see Fig. 4). To model the

total form factor F 2

tot
(q2) = (1 � fDW)F 2

r , an e�ective dipole form factor with a

temperature dependent screening constant C = 35 was used.
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and for two form factors, both (dipole and realistic) shown with and without the

inclusion of the Debye-Waller factor. The mean values of the momentum transfer are

also shown for the realistic form factor to illustrate the suppression of small values

of momentum transfer for incoherent Bremsstrahlung compared to the amorphous

case.
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Figure 6. a) Collimation function C(U(x)) versus x for several variances �c to ac-

count for beam divergence, multiple scattering and �nite beam spot size. The upper

edge of the coherent peak is at xd = 0:5 and the collimation angle Uc=0.94. b) The

in
uence of collimation at Uc=0.94 on the polarisation is shown including all these

experimental e�ects for �c = 0:3 (dotted line). It is compared to the uncollimated

case for �c = 0:3 (thick solid) and the ideal collimated (thin solid) case with �c = 0:0.

The kink in the �c=0.0 case at x=0.37 originates from the collimation discontinuity

of the lattice vector [06�6].
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vectors are shown by the three dashed lines; the solid line is the total intensity. The

insert shows for the collimated case the individual e�ect on the discontinuity xd
(dotted line) by ED(=BD+MS) and on xc (dashed line) by BS and ED as well as

the combined e�ect (solid line).
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